
V B 5 I N T E R N E T C O N T R O L S

[Logged in at this point]

POP Server Management

Initiate Connection with
POP Server IP Address

Wait for +OK

Send USER

Wait for +OK

Send PASS

Send STAT

Wait for +OK and
Number of Messages

Set Counter to
First Message

Yes?

Send TOP [Counter] 1

Wait for +OK
and Headers

No?

Disconnect
from Server

Disconnect
from Server

Messages Available? No?

Yes?Counter=Number of Messages?

Wait for +OK

Write a Control to Manage a

 POP3 Server
B Y R O N S C H W A R Z

Click & Retrieve
Source

CODE!
Use VB5 and the MS
Winsock control to
create custom
controls that access
the Internet.

B5 provides a variety of Internet-
oriented features. One of the most
exciting is the ability to createV

Internet-aware ActiveX controls. These
controls can operate in traditional appli-
cations, or within the context of a Web
browser. They can also send and receive
data over the Internet. Naturally, these
features also apply to intranet apps. This
article examines some of the ways to cre-
ate and use Internet capabilities in the
controls you create in VB5. It shows you
how to create an Internet control that
manages a Post Office Protocol version 3
(POP3) mail server to view messages with-
out downloading them to your e-mail pro-
gram. You can view the headers, selec-
tively view message bodies, and delete
individual messages on the server.

VB5 offers so much new material that
it can be a bit daunting, even to experi-
enced users. Rather than cover the essen-
tials of control creation, this article fo-
cuses on implementing Internet access,
and on showing you how to package con-
trols for deployment over the Internet.
These are two separate issues, and it’s
86 MAY 1997 Visual Basic Programmer’s Jo

Ron Schwarz is coauthoring a book
with Ibrahim Malluf with the working
title “Visual Basic 5 for the Enterprise,” to
be published by Addison-Wesley. He
and Ibrahim also wrote Special Edition
Using VBScript (Que). Reach Ron at
ron.schwarz@nethawk.com.
important to note that you can use the
same controls in your standalone appli-
cations and in your Web pages. Web de-
urnal

I

Controlling the POP Server Manager. This
for controlling a POP3 mail server from the

moment you collect or delete a
ployment, by the way, takes two forms:
HTML (either plain vanilla HTML or lay-
out control “forms”) and ActiveX Docu-
http://www.windx.com

ncrement Counter

 flowchart shows you the entire process
 moment you initiate a connection to the
ll your messages and log off.

V B 5 I N T E R N E T C O N T R O L S
ments. For our purposes, you can think of
ActiveX Documents as traditional appli-
cations because they use controls in es-
sentially the same way.

The other issue of merit, besides
Internet deployment, is Internet commu-
nications. This encompasses such things
as live content—receiving information
from a server without having to submit
and refresh a Web page—and two-way
communications. The AsyncRead method
of ActiveX documents and controls facili-
tates live content. The Fetcher example in
this article demonstrates this (see Figure
1). It implements a simple Web browser
using nothing more than VB5 code and
standard (non-OCX) controls.

Although the AsyncRead method is
only available in ActiveX Document and
Control contexts, this doesn’t prevent you
from using it in standalone apps. Simply
create a control to provide its functional-
ity. If you don’t need or want to use the
control outside of the project you’re cre-
ating, you can simply include it in the
project without compiling an OCX file.
The Fetcher example does exactly this.

Although the control contains a bit
of code that is extraneous to the
AsyncRead method, it’s easy to create
with the ActiveX Control interface Wiz-
ard supplied with VB5. There are two
main items of interest here: the actual
AsyncRead call, which sends out the
request for the URL you’re getting, and
the AsyncReadComplete event, which
fires when the URL is received. Wrap-
ping the AsyncRead method for the
Fetcher example is not complicated:

Public Function FetchURL(URL As _
String, hURL As String) As Long
AsyncRead URL, _

vbAsyncTypeByteArray, hURL
End Function

SETTING UP FETCHER
The FetchURL function is a wrapper that
allows non-Control code to use the
AsyncRead method. It accepts two strings
from the calling code: URL and hURL. URL
contains the address of the URL you want to
fetch, and hURL contains a “handle” of sorts
to the particular URL in question. You need
to be able to tell which is which when they
roll in because you can have multiple URL
requests pending at the same time. Passing
a unique string in the AsyncRead method’s
optional PropertyName property causes
the string to show up in the PropertyType
property of the AsyncProperty object that
also contains the actual URL contents when
the AsyncReadComplete event fires. By test-
ing this value, you can tell which URL is
which. The AsyncReadComplete event in
the Fetcher example receives the URL, and
notifies the container (the form that holds
http://www.windx.com
the control) by passing this information
along to the DocReceived event. Fetcher
then fires the DocReceived event. Yes, VB5
also allows you to create your own events.

Private Sub
UserControl_AsyncReadComplete _

(AsyncProp As AsyncProperty)
On Error Resume Next

RaiseEvent DocReceived(StrConv_
(AsyncProp.Value, vbUnicode), _
AsyncProp.PropertyName)

If Err Then
CancelURL AsyncProp.PropertyName
RaiseEvent DocReceived_
(Err.Description, "Failure")

End If
End Sub

The AsyncReadComplete code in-
cludes a second call to raise the
DocReceived event. This is for cases that
generate an error, and it gives you an easy
way to pass along error information. You
can also use it to issue a CancelAsyncRead
call to clean things up in case of error. You
can use a wrapper procedure (the
CancelURL method) to invoke it from out-
side the control as well.

If you’ve wondered about the purpose
of the vbAsyncTypeByteArray constant
in the AsyncRead call, it’s because the
data you’re requesting in this case is a
string of text. AsyncRead can handle three
types of requests: files, byte arrays, and
pictures. When you want to bring in a
string, you need to request the URL as a
byte array, and use the StrConv function
to convert it to a string. The other con-
Visua
stants are vbAsyncTypeFile, which re-
ceives a file, and vbAsyncTypePicture,
which receives a Picture object.

When the data rolls in, it’s contained,
along with its type and “handle,” in the
AsyncProperty object. This object is re-
turned as the only parameter of the
AsyncReadComplete event. It has three
properties: Value, which is a variant that
contains the actual URL (a variant is neces-
sary because the data can take one of sev-
eral possible forms); PropertyName, which
is a string that contains the “handle” you
provide; and AsyncType, which is an inte-
ger matching one of the three URL type
constants (vbAsyncTypeByteArray,
vbAsyncTypeFile, or vbAsyncTypePicture).

The code for Fetcher is fairly straightfor-
ward, and it should help you if you’re trying
to implement remote retrieval of Web con-
tent. I’d be remiss if I didn’t mention that
although I’m using AsyncRead as a general
purpose “fetcher,” its main reason for exist-
ing is to provide asynchronous download of
properties for controls you create. Let’s say
you’ve written a control that displays a chart
representing the distillation of a large quan-
tity of data. The AsyncRead method lets the
control paint its container and bring in its
contents as the rest of the Web page remains
interactive. You can use this approach rather
than make the control’s properties down-
load as part of the control. This allows you to
keep from locking up the browser until the
lengthy process is complete. Yes, it cheats a
bit, but it sure proves handy.

INTERACTING WITH OTHER MACHINES
Retrieving Web data with the AsyncRead
Playing Fetch. The Fetcher example captures the HTML source code from a
URL, using simple native VB code.FIGURE 1
l Basic Programmer’s Journal MAY 1997 87

V B 5 I N T E R N E T C O N T R O L S
method is easy and powerful, but it only
addresses the need for information that is
available from HTTP servers. There is a lot
of information on the Internet that is not “on
the Web.” If you want to work with this
information, you need to dig in and work
with lower-level Winsock features. The
Winsock control makes it fairly simple to
connect to other computers for nearly any-
thing. Of course, there are tradeoffs. You
must work with data coming to you in bits
and pieces, and you need to understand
88 MAY 1997 Visual Basic Programmer’s Jo
what to request and how to request it. The
POP Manager example shows how to con-
trol a POP3 mail server to examine mes-
sages without downloading them to your e-
mail program. You can view the headers,
selectively view message bodies, and de-
lete individual messages on the server (see
Figure 2). This proves quite useful for cases
where your e-mail client gets confused and
refuses to delete messages it has already
downloaded. Those “phantom” messages
can eat up a lot of server space, and eventu-
urnal
ally cause you to hit your quota, causing
incoming e-mail to bounce. It can also be
handy if you’re being mailbombed, or inun-
dated with “spam” advertising that you
don’t want to download.

The POP Manager is a single ActiveX
control that contains a handful of standard
controls and the Winsock (MSWNSK.OCX)
control. You can drop it on a VB form or a
Web page, and have an instant POP server
manager. If you place it on a Web page,
everyone accessing it can use it to manage
his or her own POP accounts.

Using host services over the Internet
usually means studying one or more “RFC”
documents. You can acquire an index and
listing of these documents at http://
andrew2.andrew.cmu.edu/rfc. RFC means
“Request For Comments,” which can be a
bit misleading because it’s really the end
result of a series of discussions. By the time
most people see an RFC, it’s an established
standard. RFC1939 is the RFC that defines
the functioning of POP3 e-mail servers. A
POP server is a program that stores incom-
ing mail at your Internet provider’s site until
your e-mail program can download it. You
can experiment with the commands and
behavior documented in RFC1939 with any
telnet program by telnetting to the server’s
IP address and the POP port (110), then
entering the data the server expects. How-
ever, it’s not productive to do this on a
regular basis.

The POP protocol is fairly simple. Com-
mands receive a response beginning with
either “+OK” (if successful) or “-ERR” (if
unsuccessful). Note that commands are
not echoed back to the sender. Message
bodies (or headers) are terminated with a
line consisting of a dot (“.”) that is termi-
nated by a CR/LF.

ISSUE COMMANDS TO A POP3 SERVER
The POP protocol contains only a few com-
mands. The first two, USER and PASS, accept
your ID and Password, and must be ex-
ecuted successfully before you can use any
of the other commands. STAT returns the
number of messages and their total size,
LIST returns information on individual mes-
sage sizes, RETR retrieves an entire mes-
sage, TOP receives headers (and lets you
specify a number of lines of body text to
retrieve with the headers), DELE deletes a
message, RSET resets deletions, and QUIT
commits deletions and logs you off the server.
There are other commands not included in
this list, but these are the most common
commands needed for accessing a POP3
server. Premier Level members of The De-
velopment Exchange (DevX) can pick up a
copy of the RFC online. See the Code Online
box at the end of this article for details.

Conversing with a POP server is a good
tutorial for Internet communications be-
cause it’s fairly simple, yet requires some
http://www.windx.com

V B 5 I N T E R N E T C O N T R O L S

“The point at which
we stop ogling about
how cool a
technology is and just
start using it in our
everyday coding is
when that technology
becomes truly useful.
VB5 allows us to
develop apps and applets that
use, in a stable way, 32-bit,
object-oriented, multitiered,
Internet-enabled technology.”

Speaking
Out

Andrew J. Brust,
president,
Progressive
Systems
Consulting Inc.
handshaking and interaction between the
client software and the server. You can
talk to any type of host after you learn how
to talk to a POP server, as long as you have
access to its RFC or other documentation.

The actual conversation takes place on
three levels. The low level manages the
actual connection between the server and
the client, the mid level handles the trans-
port of raw data to and from the server,
and the high level manages the commands
to and replies from the server.

To initiate a connection with the POP
server, use the Winsock control’s Connect
method. I named the Winsock control
“tcpIn” because it uses TCP/IP to retrieve
information. The Connect method expects
an IP address (the name of the server) and
http://www.windx.com
a port number (110 in the case of POP
mail). This code allows you to establish
the lowest level connection between the
two machines:

On Error Resume Next
tcpIn.Connect modPOPMgr.POPServer, 110
If Err Then

FatalError = True
Err = 0
Exit Function

End If
On Error GoTo 0

It’s necessary to trap for errors when
connecting because you may find a site
that’s down or incorrectly spelled. The
code to connect to the server passes the
server’s address in a property of the
MODPOPMGR.BAS module. I added prop-
erties representing all necessary server
and user information to that module, and
they are persisted in the local registry.
This means that you won’t have to re-enter
them every time you use the control.

Once you establish a successful connec-
tion with the POP server, you need to wait
for a response. The lowest level of commu-
nication is the machine-to-machine link; the
middle level transport sends the highest
level data. In this case, it sends a confirma-
tion reply beginning with “+OK” to the cli-
ent. The WaitFor function in the POP Man-
ager handles this. It’s essentially a large
DoEvents loop that repeatedly tests for one
of several conditions, and allows the rest of
the program to continue operation so in-
coming data can fire events. Calling the
function is simple:

WaitFor STATUS, OutText

t
s
d
b
s
U
r
E
h
w
c
c
t
c
s

W
A
s
i
p
S
i
c
t

Visua
STATUS is one of two constants I use
o track server activity. The other con-
tant is DOT. It’s important that you
eal with these constants appropriately
ecause the server can be in different
tates. For example, when you send a
SER command, you test for a status

eply beginning with either +OK or -
RR. When you receive a message body,
owever, you test for a string ending
ith a CR/LF.CR/LF sequence. In this
ase, you invoke the WaitFor loop pro-
edure with the DOT parameter. This
ells it to terminate when the client re-
eives the end-of-message CR/LF.CR/LF
equence.

RAP WINSOCK’S SENDDATA METHOD
fter you receive the initial +OK from the
erver, you use the USER command to
dentify yourself to the server. The Send
rocedure wraps the Winsock control’s
endData method. It does two things. First,
t calls the ClearTests procedure, which
lears the results of any previous WaitFor
ests. Next, it sends the command to the
t
t

List, View, and Delete Messages. The POP Manager Control lists all messages
on your mail server, and lets you view and delete them directly from the server.FIGURE 2
l B
'Get size and headers
'for each message

Dim c As Long 'Message counter
For c = 1 To Messages

ReDim Preserve MailItem(c)
'Get info for a message
Send "TOP " & c & " 1"
WaitFor DOT, OutText
'Parse out headers
Start = InStr(UCase$_

(WholeThing), "+OK ") + 4
Finish = InStr(Start, _

WholeThing, " ")
MailItem(c).Bytes = _

Val(Mid$(WholeThing, _
Start, Finish - Start))

Start = InStr(LCase$_
(WholeThing), "from:") + 5

Finish = InStr(Start, _
WholeThing, vbCrLf)

MailItem(c).From = _
Mid$(WholeThing, Start, _
Finish - Start)

Start = InStr(LCase$_
(WholeThing), _
"subject:") + 8

Finish = InStr(Start, _
WholeThing, vbCrLf)

MailItem(c).Subject = _
Mid$(WholeThing, _
Start, Finish - Start)

Start = InStr(LCase$_
(WholeThing), "date:") + 5

Finish = InStr(Start, _
WholeThing, vbCrLf)

MailItem(c).DateSent = _
Mid$(WholeThing, _
Start, Finish - Start)

lstHeaders.AddItem _
MailItem(c).Subject

Next

Parse the Headers. If the
parsing code finds any messages,

he control uses the TOP command to get
heir headers.

LISTING 1
asic Programmer’s Journal MAY 1997 89

V B 5 I N T E R N E T C O N T R O L S
server. It also appends a CR/LF to the
string, which is important. Failing to ap-
pend this sequence is functionally equiva-
lent to typing in the command, but never
pressing the Enter key.

Private Sub Send(TextOut As String)
ClearTests
tcpIn.SendData TextOut & vbCrLf

End Sub

You need to send the PASS command
90 MAY 1997 Visual Basic Programmer’s Jo
with your password after receiving a +OK,
then wait for another +OK. At this point,
you’re logged in to the POP server, and
you can execute any of the commands
that deal with mail management. The POP
Manager example control uses the STAT
command to find out if there are any
messages. Messages on the server are
represented by a +OK, followed by a space,
the number of messages, another space,
and the total size of the messages. You
can parse the reply in this manner:
urnal
' Parse returned string
Start = InStr(WholeThing, " ") + 1
Finish = InStr(Start, WholeThing, _

" ")
Messages = Val(Mid$(WholeThing, _

Start, Finish - Start))
If Messages = 0 Then
'bail out if none

GetHeaders = False
cmdDC_Click

'disconnect
Exit Function

End If

This is pretty straightforward string
handling code, so I won’t delve into it here.

The Messages variable contains the
number of messages on the server, if any.
If the parsing code finds any, the control
uses the TOP command to get their head-
ers (see Listing 1).

Listing 1 uses standard VB string han-
dling functions to pick out the size (in bytes),
and the From, Subject, and Date headers for
each message on the server, which I put into
an array of UDT records. The UDT also
contains items that track whether or not
each message has its body loaded into
memory, and whether or not it’s been de-
leted. Finally, it stuffs the contents of the
Subject header into a list box, which you can
use at run time to navigate through the
messages and download bodies.

If you look at the Send and WaitFor
procedures, you might think you see the
beginnings of a simple scripting language.
This is intentional, because the multi-
layered/fragmented-response nature of
Internet client/server communications is
complicated enough without one. When
you have a chance to play with the code,
you should be able to port sections of it to
other projects, using it for everything
from FTP to telnet applications.

SWITCHING GEARS
Let’s backtrack a bit, and take a look at
some of the nitty-gritty details involved in
pulling data off the server. Sending data is
simple: just package your string and send it.
Unfortunately, receiving data is more con-
voluted. The Winsock control has three
events that you need to pay attention to
when receiving data: the DataArrival, Close,
and Error events. If you think it’s simply a
matter of picking up returned data from the
DataArrival event, then dealing with errors
as they occur—well, you’re almost right. I
wish you were right, but it’s not that simple
unless you’re dealing with tiny bits of data.

The first complication is the GetData
method. The DataArrival method doesn’t
actually return any data; it only lets you
know that some data has arrived. You
need to invoke the GetData method to
retrieve the data from a buffer.

The second complication is the fact
http://www.windx.com

V B 5 I N T E R N E T C O N T R O L S
that data arrives over the net in bits and pieces, and you’re at the
mercy of numerous factors over which you have zero control.
So, the minuet begins. You send a request, then wait for the
appropriate handshake—either a status token (+OK/-ERR) or a
“dot line.” While you wait, you’re also ready—in the DataArrival
event—to receive pieces of data, lace them together, and con-
tinue waiting (back in the WaitFor loop). Finally, exit the WaitFor
loop after you receive all the data, and perform whatever
parsing and other operations you require on the received data.

The Error event fires when the control reports certain types of
errors. The POP Manager example traps them, and puts them in
the Status box. This way, you have some idea of what happened.
Errors that the Error event traps do not trigger a VB Error;
however, errors that occur during the Connect invocation do.

The Close event fires when the low-level connection to the
server is terminated. You need to keep track of this because it’s
bad form to end the program, or attempt a reconnection, while
still connected. Extremely nasty things can happen, and you
may end up crashing VB if you don’t keep track of when the
connection is open and closed.

You can find a working example of the POP Manager ActiveX
control on the free, Registered Level of The Development Ex-
change. Premier Level members of The Development Exchange
can also find examples that implement the POP manager control,
as well as an example of the POP Manager that implements its
functionality in a VB application without creating an ActiveX
control. For details, see the Code Online box at the end of this
article. One of the main differences between writing code in
traditional VB forms and ActiveX controls is the fact that the
controls don’t have Load and Unload events. However, ActiveX
controls do have Initialize and Terminate events, and also allow
the use of Sub Main, which should give you ample opportunity to
port your code over. I developed the POP Manager in a simple VB
form (with a BAS module added), and afterward ported it to a
control by the brute force method: cut-and-paste. I encountered
one snag with the TabStrip control—I could not get it to work as
part of a control when downloaded over the Internet. However, it
works fine when you use the control in a standalone project.

PACKAGING FOR THE ’NET
Installation issues become more involved as VB becomes more
powerful with each successive release. Packaging controls for Internet
deployment brings a whole new set of requirements. Not only must
the control be available, but constituent controls and run times must
be downloaded as well, along with any dependencies.

Fortunately, Microsoft has beefed up the Setup Wizard con-
siderably, so it’s not the Herculean task it would be otherwise.
The Setup Wizard takes care of creating the CAB and other files
required, as well as marking your control safe for download and
scripting when you deem it appropriate.

When you run the Wizard, you end up with an HTML file
containing the “nugget,” or a declaration for your control:

<OBJECT ID="POPMgr" WIDTH=642 HEIGHT=473
CLASSID="CLSID:56CA7589-9822-11D0-8DFB-000000000000"
CODEBASE="POPMgr.CAB#version=1,0,0,0">
</OBJECT>

Placing this declaration in your HTML creates an instance of
your control at the place in the text stream where it’s positioned.

The native-compiled version of the POP Manager control is
only 38K, which I find amazing. Considering what it does, this is
remarkable. The user downloads the run times and associated
files only once, and they never have to be downloaded again
unless Microsoft upgrades them. This means that your VB-
compiled controls should load quickly.

After you experiment with the example code, you should be
http://www.windx.com
able to do nearly any type of Internet communications you require.
You may want to extend the POP Manager by exposing some of its
methods, events, and properties so you can control it externally.
In fact, you can create a full-blown mail program with a little effort.
You can even set the POP Manager’s Visible property to False if you
choose to build it into a more extensive system. You need to learn
a few Simple Mail Transport Protocol (SMTP) commands from
RFC822 to send outgoing mail, but you will find that to be a piece of
cake after you become comfortable with POP.
Code Online
You can find all the code published in this issue of VBPJ on The
Development Exchange (DevX) at http://www.windx.com. All the
listings and associated files essential to the articles are available for
free to Registered members of DevX, in one ZIP file. This ZIP file is
also posted in the Magazine Library of the VBPJ Forum on
CompuServe. DevX Premier Club members ($20 for six months) can
get each article’s listings in a separate file, as well as additional code
and utilities for selected articles, plus archives of all code ever
published in VBPJ and Microsoft Interactive Developer magazines.

Write a Control to Manage a POP3 Server
Locator+ Codes
Listings ZIP file plus source and examples of Fetcher and the POP
Manager control: VBPJ0597

 Listings for this article plus the files described above; the POP
Manager EXE; the ActiveX deployment files for the POP Manager
control, and the POP3 RFC file in HTML (subscriber Premier
Level): RSZ0597P
Visual Basic Programmer’s Journal MAY 1997 91

	Code!

